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SUMMARY

1. Many aquatic studies have attempted to relate biological features, such as species

diversity, abundance, brain size and behaviour, to measures of habitat complexity.

Previous measures of habitat complexity have ranged from simple, habitat-specific

variables, such as the number of twigs in a stream, to quantitative parameters of surface

topography, such as rugosity.

2. We present a new video-based technique, called optical intensity, for assaying habitat

complexity in aquatic ecosystems. Optical intensity is a visual, quantitative technique

modifiable for any scale or for a nested analysis. We field-tested the technique in Lake

Tanganyika, Tanzania, on 38 quadrats (5 · 5 m) to determine if three freshwater habitats

(sand, rock and intermediate) were quantitatively different.

3. A comparison of the values obtained from optical intensity with a previous measure of

surface topography (rugosity) showed that the two corresponded well and revealed clear

differences among habitats. Both the new measure and rugosity were positively correlated

with species diversity, species richness and abundance. Finally, whether used alone or in

combination, both measures had predictive value for fish community parameters.

4. This new measure should prove useful to researchers exploring habitat complexity in

both marine and freshwater systems.
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Introduction

Habitat complexity, defined as ‘the heterogeneity in

the arrangement of physical structure in the habitat

surveyed’ (Lassau & Hochuli, 2004), clearly plays a

role in shaping animal ecology, physiology, behaviour

and brain structure/function. Previous quantitative

studies on fish have shown that habitat complexity

influences recruitment and survival (Connell & Jones,

1991; Quinn & Peterson, 1996; Torgersen & Close,

2004), the size of home ranges and territories (Imre,

Grant & Keeley, 2002), predation and predator

avoidance strategies (Hixon & Beets, 1993; Brown &

Warburton, 1997) and morphological traits (Willis,

Winemiller & Lopez-Fernandez, 2005). Habitat com-

plexity also affects species richness and diversity of

small, site-limited fish (Risk, 1972; Luckhurst &

Luckhurst, 1978; Willis et al., 2005) and, at least for

certain species and locations, abundance (e.g. Luck-

hurst & Luckhurst, 1978; Harvey, White & Nakamoto,

2005).

Many qualitative studies have associated different

features of an animal’s environment with brain size,

sensory processing and behaviour. On land, the

relative brain size of mammalian fruit-and seed-eaters

is larger than that of leaf-eaters (Pirlot & Pottier, 1977;

Mace, Harvey & Clutton-Brock, 1981; Bernard &

Nurton, 1993). In aquatic systems, Bauchot et al.

(1977) qualitatively associated a larger telencephalon

in marine fishes with a coral reef environment. In a

more detailed study, Bauchot, Ridet & Bauchot (1979)

compared relative brain size of 737 teleost species

among 113 families, although no a priori predictions

were made with respect to ecological traits, no

statistical analyses were conducted, and the study

was confounded by variations in phylogenetic dis-
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tance. Girvan & Braithwaite (1998) found differences

in spatial learning ability and strategies between pond

and river stickleback populations, but the habitat

differences were only described qualitatively. Safi &

Dechmann (2005) used wing area as a qualitative

proxy for habitat complexity in bats, and found

positive correlations with the size of the hippocampus

and the inferior colliculus.

We wanted to quantify environmental complexity

in a tropical lake in order to identify the physical

forces that may be driving neural and behavioural

diversification among closely related African cichlid

species. Specifically, we wanted to understand the

visual demands on the Ectodini and Lamprologini

clades residing in Lake Tanganyika as habitat com-

plexity increases. These animals live in diverse

habitats, ranging from sand to small rocks to large

fusiform rocks; they are renowned for their beha-

vioural diversity. Previous studies of 189 species of

cichlids in three Great African lakes (Lakes Victoria,

Malawi and Tanganyika) had demonstrated signifi-

cant differences in overall brain size and the size of

various brain structures relative to qualitative categ-

ories of physical environments (van Staaden et al.,

1995; Huber et al., 1997). Cichlids living among large

rocks had larger brains than those living over sand or

mud; pelagic species had the smallest brains (Huber

et al., 1997).

To measure habitat complexity in aquatic ecosys-

tems, many variables describing the substratum have

been tried, primarily for reef-type structures (Roberts

& Ormond, 1987). Measures include the rugosity

index (Risk, 1972; Luckhurst & Luckhurst, 1978) and

modelling of two-dimensional structure using com-

puter analysis and fractal geometry (De Marchi &

Cassi, 1993; Sanson, Stolk & Downes, 1995). Other

researchers have quantified vertical relief, rock size

and horizontal patchiness, the number and size of

‘holes’ and corrugation in the substratum (McCor-

mick, 1994; Caley & St. John, 1996; Garcia-Charton &

Pérez-Ruzafa, 2001), depth, current velocity and

species ‘preference’ (Wilkens & Myers, 1992). A test

of six metrics on coral reefs showed that all but one

differentiated various topographic structures (McCor-

mick, 1994). Gorman & Karr (1978) measured depth,

bottom type and current for small streams, and used

these values to quantify habitat diversity with the

Shannon–Wiener diversity index. Bartholomew, Diaz

& Cicchetti (2000) created dimensionless measures

that reflect how habitat complexity specifically affects

predators and their prey.

Recent studies of habitat complexity have used

several approaches for a given site. Rugosity has been

combined with the Wentworth scale for particle size

(Eakin, 1996). McCoy & Bell (1991) proposed two axes

to identify habitats uniquely: an axis of habitat

complexity, which measures variation in absolute

abundance of individual structural features, such as

crevices and an axis of habitat heterogeneity, which

measures variation in qualitatively different physical

features, such as plants. Garcia-Charton & Pérez-

Ruzafa (2001) used autocorrelograms and Mantel tests

to detect large-scale patterns in spatial structure in

Mediterranean coral reefs. Willis et al. (2005) used five

different measures to quantify habitat complexity,

followed by principal component analysis to deter-

mine the major source of variation associated with

species diversity.

To date, however, there has been little success in

creating an accepted, uniform methodology for com-

paring aquatic habitat structure that is both quantita-

tive and can be used to compare among the wide

variety of habitat structures found in aquatic systems.

Furthermore, some of the methods are laborious

(e.g. measures of profile heights: McCormick, 1994)

and scale dependent, requiring knowledge of the

appropriate scale of interest prior to the measurement

(e.g. the value of the rugosity index depends on the

length of chain and the size of the link: McCormick,

1994; for fractal dimension D, see Sanson et al., 1995).

Scale matters, as the importance of particular surface

features for a given species depends on their size

relative to that animal (Dahl, 1973; Schmidt-Nielsen,

1984).

This paper describes a simple, purely visual

method, termed optical intensity, that is applicable

to any depth at which it is possible to obtain video

images. The method can be scaled up or down

subsequent to the field measure, and also can be used

in a nested analysis. As the method quantifies visual

complexity, not surface topography, it provides a

measure of habitat complexity of particular relevance

to visual species. After describing the method, we

illustrate its use with a field study of habitat com-

plexity and fish community parameters in different

benthic habitats in an African tropical lake, Lake

Tanganyika. The method can be used in combination

with other measures, such as rugosity, to compare
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habitats of interest. Furthermore, the method can be

used in a quantitative comparison of habitat quality

among aquatic regions being considered as protected

areas.

Methods

We conducted measurements over three field seasons

(1998, 2003 and 2004) at the Tanzanian Fisheries

Research Institute (TAFIRI), Kigoma, along the shores

of Lake Tanganyika. Using SCUBA (self-contained

underwater breathing apparatus), we laid 25 m2

square quadrats at a depth between 2–15 m (the

typical depth for the focal species), sampling each of

three habitats: sand, rock and intermediate.

Rugosity

Rugosity, a measure of surface topography, has been

used in both marine and freshwater environments

(Luckhurst & Luckhurst, 1978; Garcia-Charton &

Pérez-Ruzafa, 2001; Willis et al., 2005). Rugosity was

measured in 37 quadrats with a 5-m chain (one link ¼
1.5 cm) and a 3-m rope, weighted at the end. The chain

was fitted to the contours of the substratum, and the

rope was pulled taught. The ratio of the chain length to

rope length equalled the rugosity value. Three rugos-

ity measures were taken in each quadrat, at random

locations and orientation with respect to the quadrat

borders. The rugosity measures were subsequently

normalised by calculating a Z score (Zar, 1999).

Optical intensity

Intensity analysis is a purely visual, scale-independ-

ent, measure of habitat differences (Fig. 1). Essen-

tially, the method is a measure of the variation in

optical intensity obtained from video images. Using

either a digital 8 video camera [Sony TRV 510 (Sony

Electronics, Inc., Park Ridge, NJ, U.S.A.): 1998 field

season] or a three CCD miniDV video camera [Sony

TRV900 (Sony Electronics, Inc., Park Ridge, NJ,

U.S.A.): 2003 and 2004 field season], a SCUBA diver

filmed the quadrat, hovering approximately 1 m

above the substratum. Care was taken to videotape

each quadrat at approximately the same time of day,

so that the visual conditions (i.e. light intensity,

reflection and refraction) remained as constant as

possible. The videographer made seven tracks within

the quadrat, swimming at a constant speed along the

(b)(a) (c)

Fig. 1 Demonstration of the optical

intensity method. (a) Video frames of

sand, intermediate and rock habitat,

respectively. The numbers at the top

indicate the mean variance for that par-

ticular frame. (b) Corresponding bitmap

analysis. Note: while the analysis itself

used a grey-scale representation, a colour

representation is provided for visual

clarity. (c) Top: colour scale (0–255) of the

corresponding bitmap analysis. Bottom:

calibration, using a chequerboard, of the

extreme intensities, 0 and 255.
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quadrat edges as well as making three evenly-spaced

internal passes in the middle of the quadrat.

Each of the 38 quadrats was assigned to one of three

qualitative categories: ‘sand’, ‘rock’ or ‘intermediate’,

based on the presence or absence of sand, large rocks

or a mixed habitat (e.g. sand with small to medium-

sized rocks, sand with grasses). In order to determine

which sample size would best reflect habitat hetero-

geneity, we first obtained data from five, nine or 20

frames, respectively, from a sand, an intermediate and

a rock quadrat. The videotape was randomly sampled

by dividing the time required to complete the given

quadrat by the number of images required for each

sample. Bartlett’s test of homogeneity showed that the

null hypothesis of equal variance across sample size

could not be rejected (Bc and the corresponding

P values for sand, intermediate and rock, respectively,

are: 0.492 (P ¼ 0.62); 0.563 (P ¼ 0.57); 0.540 (P ¼ 0.58);

v2
0.05,2 ¼ 5.991); hence, we subsequently used five

frames/quadrat to capture its variance. The time

required to complete a given sweep along each edge

of the quadrat or the centre was then determined, and

one frame was randomly chosen for each of the five

sweeps.

The five randomly determined frames/quadrat

were grabbed using Digital Origin’s MotoDV [version

1.4 (Digital origin, Mountain view, CA, U.S.A.)]. They

were brought into either Adobe PhotoShop [version

8.0 (Adobe Products, Inc., San Jose, CA, U.S.A.)] or

GIMP (GNU Image Manipulation Program, open

source software, www.gimp.org) to crop the frames

so that the quadrat rope was not present in the analysis

and the frames were all of the same size. The final size

of each image was 440 · 480 pixels (representing an

area of 35.7 · 39.0 cm or 12.3 pixels cm)1). The scale of

the videotaped quadrat was determined using the

known diameter of the rope, and comparing it to the

rope in the image. The files were then imported into

Image-Pro Plus version 3.0 (Media Cybernetics, Silver

Spring, MD, U.S.A.), producing a grey-scale bitmap

analysis of each image and subsequent intensity

analysis of the bitmap resulted in intensity values for

each pixel in the image. The range of intensity values

was calibrated using a white and black chequerboard

reference, with intensity values ranging from 0 (black)

to 255 (white). The SD of the intensity values was

determined for each of the five images, and the mean

of the SD was determined for the group of five

images/quadrat. The normalised mean SD for each

quadrat was then calculated (Z score: Zar, 1999) and

used for statistical comparison among quadrats.

To test whether optical intensity separates habitats

at a different scale, we repeated the optical intensity

analysis at a coarser level of resolution (2 cm2 or

24 · 24 pixels). This value was chosen for two

reasons. Firstly, 2 cm is roughly equivalent to the

orthogonal dimension of the adult cichlids’ predators.

Bartholomew et al. (2000) showed that the size of

holes relative to the orthogonal measure of a predator

accurately predicted prey survivorship for Fundulus

heteroclitus (Linnaeus). For both the Ectodini and

Lamprologini species that live in rock or intermediate

habitats, rock holes smaller than 2 cm provide refuge.

Secondly, this is the same size as the fry of our

ectodine focal species fry, at 3–4 months old. Fry at

such an age and size are at particular predation risk,

since younger fry live in the parents’ mouth. Adjust-

ment of scale was achieved by applying the blur filter

in GIMP to a given bitmap image, selecting the pixelize

option, and providing the size of the desired pixel

(24 · 24 pixels). We then computed the normalised

optical intensity values for a randomly selected sub-

sample from each habitat (five frames/quadrat; seven

quadrats/habitat) as described above.

Statistical analyses and model comparisons

Statistical significance of the differences in optical

intensity was determined with an ANOVAANOVA, followed

by a post hoc Games-Howell’s test to compare intensity

differences between habitats. Games-Howell was

used because of the differences in sample size and

variance among sand, intermediate and rock habitats.

We conducted simple linear regression to examine the

relationship between various fish community param-

eters (species diversity, richness and abundance) and

the habitat measures.

A number of authors advocate the use of more than

one method for habitat quantification at the same site

(e.g. Gorman & Karr, 1978; McCoy & Bell, 1991;

McCormick, 1994; Beck, 2000; Garcia-Charton & Pérez-

Ruzafa, 2001; Willis et al., 2005). We explored the value

of combining both habitat complexity measures with

cluster analysis. Specifically, we performed unsuper-

vised hierarchical clustering for the 31 quadrats in

which both measures were obtained, using the hclust

function in R/Bioconductor (R Development Core

Team, open source software, www.bioconductor.org,
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2004), with Euclidean distance as the similarity metric

and complete linkage as the agglomeration method

(i.e. the method for combining observations into

clusters). The result was visualised with the heatmap

function in R/Bioconductor. We used bootstrapping

(i.e. resampling with replacement) to obtain reliability

estimates for the cluster nodes. A consensus tree was

constructed by repeating the hierarchical clustering

1000 times on randomly permutated rugosity/optical

intensity profiles using the hclust, consensus and heat-

map functions in R/Bioconductor. To test the predic-

tive value of the combined habitat complexity

measures, multiple discriminant analysis was conduc-

ted and classification success determined, using Wilks’

lambda test for significance.

To evaluate alternative candidate models of habitat

measures relative to the biotic parameters, we applied

Akaike’s information criterion for small samples,

AICc, using Amos 5.0 (Assessment Systems Corpora-

tion, St. Paul, MN, U.S.A). The estimated model

selection probabilities were based on 10 000 bootstrap

samples. We assumed equal prior probabilities for all

eight candidate models for each biotic parameter

(Fig. 2). The eight models include: (i) optical intensity

alone; (ii) rugosity alone; (iii) combined (optical

intensity + rugosity); (iv) optical intensity + rugosi-

ty + covariance (i.e. between the two variables); (v)

optical intensity + covariance; (vi) rugosity + covari-

ance; (vii) covariance alone; and (viii) other (latent

error term). The saturated model (the 9th model)

assumes no constraints. We also explored models

which included both continuous and categorical

(qualitative variables) as well as models which inclu-

ded categorical variables alone. Differences in Akaike

values (Di or the difference between the best model

and the alternative) can be used to infer the strength

of evidence for one model over another. A Di value

within 1–2 of the best model has strong support and

should be considered along with the best model; a Di

value within 4–7 of the best model has less support;

and a Di value >10 can be eliminated from considera-

tion (Burnham & Anderson, 2002). Rescaling the

Akaike weights (
P

xi), such that the sum equals 1,

provides a posteriori probabilities for each model. The

importance of any given predictor variable (rugosity,

optical intensity, qualitative habitat) is obtained by

summing the weights for that variable for each model

in which the predictor variable appears.

Results

The complexity of 25 m2 quadrats from different

habitats was compared using the surface topographic

measure of rugosity as well as optical intensity, at a fine

level of resolution (12.3 pixels cm)1) (Fig. 3). Normal-

ised rugosity measurements (Fig. 3a) demonstrate a

significant difference among the three qualitatively

assigned habitat types: sand (mean ± SE: )1.07 ± 0.04,

n ¼ 10), intermediate ()0.03 ± 0.18, n ¼ 17) and rock

(1.11 ± 0.20, n ¼ 10) (ANOVAANOVA: F2,34 ¼ 32.99, P < 0.0001;

Games-Howell’s test: P < 0.001 for all comparisons).

Normalised optical intensity analyses (Fig. 3b) also

show a significant difference among the habitats: sand

(mean ± SE: )0.721 ± 0.04, n ¼ 11), intermediate

(0.018 ± 0.14, n ¼ 16) and rock (0.69 ± 0.26, n ¼ 11)

(ANOVAANOVA: F2,34 ¼ 15.67, P < 0.001), with sand signifi-

cantly different from intermediate and rock habitats, as

judged by Games-Howell (P < 0.05).

To test whether optical intensity separates habitats at

a different scale, we reran the optical intensity analysis

at a coarser level of resolution (2 cm2 or 24 · 24 pixels;

see Methods for further details). After rescaling the

quadrats for a sub-sample of seven quadrats/habitat,

normalised optical intensity analyses continue to show

a significant difference among the qualitative habitat

designations: sand (mean ± SE: )0.668 ± 0.058), inter-

mediate (0.164 ± 0.236) and rock (0.370 ± 0.252) (ANO-ANO-

VAVA: F2,18 ¼ 7.387, P ¼ 0.0045). Sand habitats continue

to be significantly different from intermediate and rock

habitats (Games-Howell, P < 0.05).

Rugosity and optical intensity values were positively

correlated (Fig. 3c; r2 ¼ 0.52; P < 0.0001; sand, inter-

mediate, rock: n ¼ 9, 15 and 7, respectively). Note that

the qualitative determination of intermediate habitats

includes a variety of habitats, including sand inter-

spersed with rocks of varying size, sand with grasses,

and sand with shells. The increased variance in rugos-

ity measures is a result of these varying types of habitat.

Fig. 2 Diagram of candidate models tested for each biotic

parameter, using species number as an example. See Methods

for further details.
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A cluster analysis of the rugosity and optical

intensity values was constructed using Euclidean

distance as the similarity metric (Fig. 4). Only nodes

above a 50% Confidence Interval are presented. Each

endpoint represents a single quadrat (identified by a

number and its associated, qualitatively assigned

habitat). The resulting dendrogram clearly identify

two major clusters: sand/intermediate and rock/

intermediate. No overlap occurred between the two

extremes of the habitat scale (sand and rock). The

overlap of the intermediate habitat with the other

habitats is a reflection of its role as an ecotone, i.e. a

transitional area between two adjacent ecological

communities. The overlap also demonstrates that

qualitative, subjective assessments of habitat com-

plexity do not always show concordance with more

objective measures.

To test whether the habitat complexity measures

could predict habitat categories, multiple discriminant

analysis was conducted and classification success

determined (Table 1). The per cent correctly classified

(i.e. the hit ratio) was 77.4%. The groups were signi-

ficantly different (Wilks’ lambda2,28 ¼ 0.313, d.f. ¼ 2,

approximate F4,54 ¼ 10.625, P < 0.0001). All seven of

the sand quadrats were correctly classified as sand

(group classification percentage: 100%). Seven of the

Fig. 4 Dendrogram of the cluster analysis of the rugosity and

optical intensity values, with Euclidean distance as the similarity

metric and complete linkage as the agglomeration method. Each

endpoint represents a single quadrat (identified by a number

and its associated, qualitatively assigned habitat). Two major

clusters are evident: sand/intermediate and rock/intermediate.

The two extremes, sand and rock, never cluster together.

(a)

(b)

(c)

Fig. 3 Comparison of two habitat complexity measures among

qualitatively assigned habitats. (a) Comparison of normalised

rugosity among sand, intermediate and rock habitats (n ¼ 10, 17

and 10, respectively). Normalised rugosity values among the

three habitats were significantly different, as indicated by the

asterisks. (b) Comparison of normalised optical intensity values

among these same habitats (n ¼ 11, 16 and 11, respectively).

Normalised optical intensity values were also significantly dif-

ferent, except for the rock/intermediate comparison. (c) Corre-

lation of rugosity and optical intensity values within the same

quadrat. Black filled squares: sand habitat (n ¼ 10); grey open

squares; intermediate habitat (n ¼ 15); black filled triangles; rock

habitat (n ¼ 9). The outline of the different habitats is enclosed

for visual clarity.
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nine rock quadrats were correctly classified as rock

(77.8%); the other two were classified as intermediate.

Ten of the 15 intermediate quadrats were classified as

intermediate (66.7%), three as rock and two as sand.

Correlations between habitat complexity measures

and fish community parameters were tested for those

31 quadrats in which both habitat measures were

obtained (Fig. 5). Positive correlations were found with

all biotic parameters. Both rugosity and optical inten-

sity were positively correlated with species richness

(Fig. 5a,c, rugosity: r2 ¼ 0.317; P ¼ 0.0012; optical

intensity: r2 ¼ 0.234; P ¼ 0.008). Optical intensity was

significantly correlated with abundance (Fig. 5b,d,

r2 ¼ 0.209, P ¼ 0.01). Rugosity was marginally insig-

nificant (r2 ¼ 0.0234, P ¼ 0.07). Both measures were

positively correlated with Simpson’s Index of Diversity

(i.e. 1)D) (Fig. 5e,f: rugosity: r2 ¼ 0.226; P ¼ 0.007;

optical intensity: r2 ¼ 0.135; P ¼ 0.04).

To evaluate the predictive value of different com-

binations of the habitat measures relative to the biotic

parameters, we used Akaike’s information criterion

for small samples, AICc (Table 2). For each biotic

parameter, eight models were tested, using the

following predictor variables: rugosity alone, optical

intensity alone, both combined, both combined with

the covariance measure, rugosity together with the

covariance measure with optical intensity, etc. Only

the top three models are shown in Table 2. The

smallest weight provides the best model (bold num-

bers). However, models with AICc differences < 2

(shaded boxes) also have strong support and should

be considered together with the best model.

Rugosity, together with the covariance measure,

was the best approximating model for Simpson’s

Index of Diversity, along with species richness

(Table 2). Optical intensity together with the covari-

ance measure was the best approximating model for

abundance. The combined measure (optical inten-

sity + rugosity + the covariance measure) was an

equally strong model for all three biotic parameters.

To compare the importance of various predictor

variables, the Akaike weights were summed (
P

xi) for

all models containing the given predictor variable

(Table 3). Models were constructed using the con-

tinuous variables alone, the categorical variable (qual-

itative measure of habitat) alone or together.

Considering the continuous variables alone, rugosity

was an important predictor variable for Simpson’s

Index of Diversity (0.884) and richness (0.701), but

was less important for abundance (0.299). Optical

Table 1 Classification matrix for habitat assignment, based on normalised optical intensity and rugosity measures

Actual habitat Predicted habitat (number of quadrats)

Qualitatively-assigned habitat types Number of quadrats Rock Intermediate Sand Group classification percentage (%)

Rock 9 7* 2 0 77.8

Intermediate 15 3 10* 2 66.7

Sand 7 0 0 7* 100

Predicted total 31 10 12 9

*Indicate the dominant predicted habitat for the three actual habitats.

The percent correctly classified is (100) (7 + 10 + 7)/31 ¼ 77.4%.

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Fish community parameters as a function of habitat

complexity measures. Top: species richness as a function of

rugosity (a) and optical intensity (c). Middle: abundance as a

function of rugosity (b) and optical intensity (d). Bottom: species

diversity (Simpson’s Index of Diversity) as a function of rugosity

(e) and optical intensity (f). All regressions are significant, with

the exception of abundance as a function of rugosity.
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intensity was an important predictor variable for

abundance (0.655), a moderately important predictor

variable for Simpson’s Index (0.389) but less import-

ant for richness (0.297). Adding the categorical vari-

able to the model greatly improved the predictive

value for richness (0.900), but the categorical/con-

tinuous combination was worse than the best con-

tinuous measure for the other two biotic parameters.

The categorical variable alone was considerably worse

than the continuous variables for all biotic parameters,

reinforcing the results obtained from the dendrogram.

Discussion

In this study, we demonstrated significant quantita-

tive differences among tropical freshwater benthic

habitats in Lake Tanganyika, Tanzania, using a

preexisting measure of surface topography (rugosity)

and a novel visual measure of variation in chromatic

differences (intensity analysis). We found that these

measures were positively correlated. We also showed

that qualitative, subjective assessments of habitat

complexity are not always confirmed by the more

objective quantitative measures described here.

Intensity analysis

Intensity analysis is a simple, video-based technique.

For biological analysis, we are aware of only one other

video method. Roberts & Ormond (1987) used a video

measure of the surface index created by Dahl (1973),

which determined the ratio of the actual surface area

of a given habitat to that of a plane with the same

dimensions. However, this ‘surface index’ video

method required prior knowledge of the surface

index of the substratum or field measurements of

Table 2 Evaluation of alternative candidate models of habitat measures (such as optical intensity alone, rugosity alone, measures

combined, etc.) relative to the biotic parameters, using Akaike’s information criterion for small samples, AICc. Only the three best-

approximating models (out of eight) are shown for each biotic parameter

Biotic parameter Model K AICc

AIC differences Di

D (best-alternative)
P

xi

Simpson’s Index of Diversity R + covar 5 )37.00 – 0.610

OI + R + covar* 6 )35.12 1.876 0.239

OI + covar 5 )33.67 3.332 0.115

Richness R + covar 5 14.21 – 0.460

OI + R + covar* 6 15.5 )1.292 0.241

OI + covar 5 18.43 )4.22 0.056

Abundance OI + covar 5 13.62 – 0.471

OI + R + covar* 6 15.5 )1.881 0.184

R + covar 5 17.97 )4.355 0.115

R, rugosity; OI, optical intensity; covar, covariance; K, number of parameters;
P

xi, Akaike weights (sum ¼ 1).

The bold number indicates the best model (smallest AICc value); rows with asterisk indicate strong alternative models which differ by

< 2 AIC differences from the best model.

Table 3 Evidence for the importance of each predictor variable, based on sums of Akaike weights across all models (for a given biotic

parameter) in which the variable occurs

Biotic parameter

Continuous variables only Continuous plus categorical Categorical variables only

Predictor variable
P

xi Predictor variable
P

xi Predictor variable
P

xi

Simpson’s Index of Diversity – Categorical measure 0.633 Categorical measure 0.489

Rugosity 0.884 Rugosity 0.547 –

Optical intensity 0.389 Optical intensity 0.301 –

Richness – Categorical measure 0.900 Categorical measure 0.500

Rugosity 0.701 Rugosity 0.295 –

Optical intensity 0.297 Optical intensity 0.254 –

Abundance – Categorical measure 0.591 Categorical measure 0.483

Rugosity 0.299 Rugosity 0.291 –

Optical intensity 0.655 Optical intensity 0.503 –
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the surface index for a new substratum before video

analysis.

Geologists have utilised intensity measures for

textural analysis of geological surfaces, including

images obtained from side-scan sonar (Haralick, Shan-

mugam & Dinstein, 1973; Blondel, 2000), but the

analysis is more involved. The process utilises

co-occurrence matrices, which determines the spatial

relationship between pixels by quantifying the relative

frequency of occurrence of two grey levels separated

by a specific distance and angle. However, this more

detailed method would be useful if one needs to

quantify fine-grained differences among substrata, and

software is now available to automate the process

(TexAn: for Textural Analysis: Blondel, 2000).

Biological significance

A field test of both rugosity and intensity analysis in

Lake Tanganyika showed that three fish community

parameters: species diversity, species richness and

abundance, were positively correlated with increasing

habitat complexity, as measured by either rugosity

(Pollen et al., 2007) or intensity analysis (this study).

The results indicate that surface topography is related

to patterns of species distribution and abundance in a

tropical lake. The next step would be to manipulate

complexity experimentally, and to explore how this

affected the biological parameters. Studies on coral

reefs have previously demonstrated a correlation with

species diversity and rugosity and richness and

rugosity, at least for small, site-limited fish species

(Risk, 1972; Luckhurst & Luckhurst, 1978). Correla-

tions between abundance and complexity measures

have been more variable, with different results

obtained depending on the size of the fish, the family

and even the location (Risk, 1972; Luckhurst &

Luckhurst, 1978; Roberts & Ormond, 1987).

Employing both rugosity and optical intensity

measures, we recently demonstrated a correlation

between habitat complexity and visual acuity in

cichlid fishes (Dobberfuhl, Ullmann & Shumway,

2005) and between habitat complexity and the size of

the telencephalon and the optic tectum (Pollen et al.,

2007). At this point, we don’t know how complex

habitats, such as rock or coral reefs, lead to more

complex brains and behaviours. Some have specula-

ted that the associated increased species diversity

leads to complex predator/prey interactions, and

competitive and cooperative social interactions

(Caley & St. John, 1996), which can potentially

enhance both sensory and cognitive abilities (Reese,

1989; Brown & Warburton, 1997; Mikheev, Afonina &

Gaisina, 1997).

Comparison of habitat complexity methods

When comparing habitats that are obviously different,

as represented in this study by sand and rock habitats,

qualitative (categorical) measures may suffice. How-

ever, quantification is recommended where: (i) there

is uncertainty about the difference among habitats (as

seen by the comparison between intermediate and

rock habitats in Fig. 3); (ii) the habitats are diverse;

(iii) the aim is to compare among aquatic ecosystems;

or (iv) a fine-grained analysis is required, enabling

subsequent exploration of causality of factors between

habitat and a biotic parameter.

Both rugosity and optical intensity analysis have

their advantages and disadvantages. The advantages

of the rugosity index are that it is quick and has been

routinely used by a variety of investigators (e.g.

Luckhurst & Luckhurst, 1978; McCormick, 1994;

Garcia-Charton & Pérez-Ruzafa, 2001; Willis et al.,

2005). The disadvantage is that one must know the

appropriate scale of interest in advance of obtaining

the field measure, as the index can vary with varia-

tions in the length of the chain and the size of the link.

Scale matters because the importance of particular

surface features for a given species depends on their

size relative to that animal (Dahl, 1973; Schmidt-

Nielsen, 1984). For example, a large zooplanktivorous

fish may be more concerned with the macroscopic

patterns of the rock, such as large crevices, while a

small algal-feeding fish with a limited home range

may be more concerned with minute features, such as

textural patterns that could influence food availability.

In other words, the ecological significance of habitat

structure probably depends upon body size, territory

or home range (Luckhurst & Luckhurst, 1978; McCor-

mick, 1994). Bell et al. (1993) showed that the variance

of a variety of environmental variables in a forest

increased relative to increasing distance between

habitats. Luckhurst & Luckhurst (1978) showed that

the correlation of rugosity and species richness was

size dependent. Fish species > 50 mm standard length

showed a correlation with species richness and

rugosity; those smaller than 50 mm did not.
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A second disadvantage of rugosity is that it cannot

discriminate the shape and size of habitat compo-

nents, relative to scale. For example, a complex, small-

scale topography would have the same rugosity

values as a simple large-scale topography. Thus, the

rugosity index is not a good indicator of heterogeneity

at both scales (Roberts & Ormond, 1987). Finally,

rugosity is not capable of distinguishing fine textural

differences (McCormick, 1994).

The advantages of the video-based intensity analy-

sis method are that: (i) the scale adjustment can occur

after the field measures are made; (ii) the method can

be used at different depths; and (iii) the method can

be used in locations where SCUBA is not possible (by

attaching the video camera to a vessel or pole).

Furthermore, it is a direct measure of the visual

image preserved by the fish and thus is more suitable

for correlating visual processing with habitat differ-

ences. In addition, by simply combining the pixels to

generate scales of the appropriate size for a given

species of interest, intensity analysis allows one to

pursue different scales of interest or even conduct a

nested analysis of scale. Depending on the ecology of

a given animal, an investigator could explore scale at a

level appropriate for visual processing (this study),

predator avoidance (e.g. Bartholomew et al., 2000),

territory size (Imre et al., 2002), etc. Finally, the

method also has potential applications in aquatic

conservation, as it enables managers to compare

habitat quality among areas being considered for

protection. The only disadvantage of this method is

that while videotaping the quadrat is relatively quick,

the subsequent analysis is more time-consuming.

Combining both continuous measures alleviates

these disadvantages and provides additional insight

into segregation of habitats. For example, in this

study, cluster analysis of the rugosity and optical

intensity values demonstrates discrete clusters of

different habitats, and the combined measures had

high classification success. Further, the Akaike

weights demonstrate that the combined measure

had a predictive value at least as strong as the best

single measure alone. We note that many authors

recommend multiple approaches for quantifying

aquatic habitat complexity (e.g. Gorman & Karr,

1978; McCoy & Bell, 1991; McCormick, 1994; Beck,

2000; Garcia-Charton & Pérez-Ruzafa, 2001; Willis

et al., 2005), as each variable is influenced by different

aspects of the surface topography. There are limits to

combining variables, however. Adding the categorical

variable to the combined measure had marginal value

for two out of three of the biotic parameters: only

models predicting species richness were improved. In

sum, this new measure, used either alone or in

conjunction with rugosity, should prove useful to

researchers exploring the role of habitat complexity in

both marine and freshwater systems.
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