Analysis of hippocampal transcriptomic responses to technical and biological perturbations


Harris RM, Kao H-Y, Alarcon JM, Hofmann HA, Fenton AA. Analysis of hippocampal transcriptomic responses to technical and biological perturbations. bioRxiv. 2017.
harris_et_al._2017.pdf814 KB


Cost-effective next-generation sequencing has made unbiased gene expression analysis possible. Single-neuron gene expression studies may be especially important for understanding nervous system structure and function because of the neuron-specific functionality and plasticity that defines functional neural circuits. Cellular dissociation is a prerequisite technical manipulation for single-cell and single cell-population studies, but the extent to which the cellular dissociation process cells affects neural gene expression has not been determined, nor has it been determined how gene expression is altered by the stress that accompanies many of the behavioral manipulations that are required to study learning and memory and other cognitive functions. Here, we determined to which extent cellular dissociation-induced changes in hippocampal gene expression might confound studies on the behavioral and physiological functions of the hippocampus. We processed tissue punch samples from the dentate gyrus (DG), CA3, and CA1 hippocampus subfields using either a tissue homogenization protocol or a cellular dissociation protocol in preparation for RNA sequencing analysis to evaluate the impact of the tissue preparation. Then, we evaluated the effect of stressful experience and cognitive training on hippocampus subfield specific gene expression and determined to which extent these response overlap with the cellular dissociation response. Finally, we assessed the extent to which the subfield-specific gene expression patterns are consistent with those identified in a recently published hippocampus subfield-specific gene expression database. We report substantial differences in baseline subfield-specific gene expression, that 1% of the hippocampal transcriptome is altered by the process of cellular dissociation, that an even weaker alteration is detected 24 h after stressful experience, and that while these alterations are largely distinct from the subfield specific response of the hippocampus transcriptome to cognitive training, there is nonetheless some important confounding overlap. These findings of the concordant and discordant effects of technical and behavioral manipulations should inform the design of future neural transcriptome studies and thus facilitate a more comprehensive understanding of hippocampal function.

Last updated on 06/22/2017